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Tube diameter in tightly entangled solutions of semiflexible polymers
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A statistical mechanical treatment is given of the confinement of a wormlike polymer in an entangled
solution to a tube, yielding quantitative predictions for the average tube diameterDe and macroscopic plateau
modulusG, in the tightly entangled regime in whichDe is much less than the persistence lengthLp . Three
approaches are pursued. A self-consistent binary collision approximation, which explicitly describes the topo-
logical constraints imposed by neighboring chains, yields predictions consistent with the scaling lawsDe

}r23/5 andG}r7/5 proposed previously, wherer is the contour length per unit volume. An effective medium
approximation, which treats the network as a continuum with a modulusG, instead yieldsDe}r21/3 andG
}r4/3, which is found to be the correct scaling in the limitrLp

2@1. An elastic network approximation treats the
displacement of a test chain as the sum of a collective displacement of the network, which is treated as a
continuum, plus a local displacement, which is treated in a binary collision approximation. Predictions are
compared to measurements of bothDe andG in actin protein filament (F-actin! solutions.

DOI: 10.1103/PhysRevE.63.031502 PACS number~s!: 83.10.Kn, 47.50.1d, 87.15.Aa, 87.16.Ka
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I. INTRODUCTION

Several theoretical studies have discussed the dyna
@1–4# and viscoelasticity@5–14# of very highly entangled
solutions of semiflexible polymers. Interest in this subje
has been motivated in part by experimental studies of s
tions of actin protein filaments (F-actin!. F-actin has simul-
taneously been of interest to biologists as a major constitu
of the cellular cytoskeleton, and to physicists as a mo
system of semiflexible polymers. Sufficiently concentra
solutions ofF-actin and other similarly long, stiff polymer
can form an entangled state in which each polymer is ef
tively confined to a tube~over periods of time less than
reptation time! in which the tube diameterDe and entangle-
ment lengthLe are both much less than either the persiste
length Lp or contour lengthL of the polymers. I have re
ferred to such solutions@10–13# as ‘‘tightly entangled’’ so-
lutions of wormlike chains, to distinguish them from th
more familiar case of ‘‘loosely entangled’’ solutions typic
for solutions and melts of flexible polymers, in which th
tube diameter and entanglement contour length are both
nificantly larger than the persistence length.

The tube model developed in@11,12# to describe the
tightly entangled regime requires as an input paramete
value for the tube diameter or the entanglement length
does the original Doi-Edwards tube model of flexible
loosely entangled chains@15#. In both regimes, the value
provided forDe or Le directly determines the value predicte
for the plateau modulus by the appropriate tube model. Th
is thus far no quantitative molecular theory for the absol
magnitude of the tube diameter or plateau modulus in loos
entangled solutions or melts of flexible chains, although s
ing laws have been developed to describe the dependen
the plateau modulus upon polymer concentration in soluti
of both good@16,17# andu solvents@18,19#, and upon geo-
metrical properties of the chain in the melt@20#.

In this paper, I attempt to give a quantitative theoreti
treatment of the forces confining each polymer to a tube
1063-651X/2001/63~3!/031502~22!/$15.00 63 0315
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tightly entangled solutions, and thereby predict values for
tube diameter and plateau modulus in such solutions.
paper is organized as follows. Section II presents operatio
definitions of the tube diameter, the entanglement length,
the effective confinement potential for a single tightly e
tangled polymer, and relates these microscopic quantitie
the predictions of Refs.@11,12,14# for the macroscopic pla-
teau modulus. Section III contains an overview of the ba
ideas and qualitative results of three different approxim
calculations of the tube diameter. Details of these calcu
tions are presented in Secs. IV–VI. Section VII contains
comparison of theoretical predictions to experimental res
for F-actin solutions. Section VIII is a summary of conclu
sions.

II. DEFINITIONS

Consider a network of very long semiflexible chains, ea
of persistence lengthLp and contour lengthL, with a density
r of polymer contour length per unit volume. The conform
tion of a single chain may be described by a contourr (s),
wheres is a contour distance measured from one end of
chain. The bending energy is given by the wormlike cha
model,

Ubend@r #5 1
2 TLpE

0

L

dsU]2r ~s!

]s2 U2

. ~1!

Here and in what follows, temperatureT is measured in units
of energy, so thatkB[1. The chains are constrained to b
inextensible by requiring thatu]r (s)/]su51, and are treated
throughout this paper as uncrossable but infinitely t
threads.

I focus here on a tightly entangled concentration regi
in which the geometrical mesh sizeLm[r21/2 is much less
than Lp , and in which the tube diameter and entanglem
length are also expected@11# to be much less thanLp . It is
assumed that each chain in a tightly entangled solution
©2001 The American Physical Society02-1
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effectively confined to a tubelike region over time sca
much less than a reptation timet rep . In the limit of very
long chains, and correspondingly long reptation times,
topological structure of a network of uncrossable chains m
be treated as if it were permanent for the purpose of desc
ing averages of chain conformations over shorter times. T
different kinds of statistical average are used in what follo
to describe this situation. A thermal equilibrium average
a network of some specified topology, denoted by^•••&, is
given by a Boltzmann-weighted average over all topolo
cally accessible microscopic configurations of the netwo
By ‘‘topologically accessible’’ configurations, I mean thos
that can be deformed into one another without requir
chains to cut through each other, and also without requir
the system to pass over any other large energy barriers,
as that associated with forcing a chain to double over int
hairpin. This topologically constrained ensemble avera
will be assumed to be equivalent to a time average o
times much less than the reptation timet rep but much greater
than an entanglement time, which is~roughly! the time re-
quired for local equilibration of transverse fluctuations of t
polymer within its tube. In addition, one may define an a
erage over all possible network topologies, denoted by•••.
When calculating averages over periods of time less than
reptation time, the average over network topologies may
treated as an average over a quenched random variable

In what follows, I consider a hypothetical situation
which a physically entangled solution is first allowed
come to an initial state of topologically unconstrained th
mal equilibrium, by relaxing over many reptation times, b
fore any averages are evaluated or external forces~discussed
below! are applied to the system. Thermal averages ev
ated in the initial unperturbed equilibrium state will be d
noted by^•••&0. The double averagê•••&0 in this initial
state must be rigorously equivalent, for chains with neg
gible excluded volume, to the thermal equilibrium average
an ideal solution of completely noninteracting ‘‘phantom
chains: When the interactions between chains have an in
tesimal range, they exclude only an infinitesimal fraction
the configuration space of the solution, and so can have
effect upon any equilibrium average, even though they d
tically alter the solution’s dynamics.

To characterize the constrained fluctuations of a sin
polymer, I focus attention upon a single randomly chos
‘‘test’’ chain within a network of N11 chains, which is
surrounded byN other ‘‘medium’’ chains. The contour of the
test chain is given by a vectorr (s), wheres is a distance
measured along its contour. I consider how the distribut
of contours for such a test chain would be affected by
hypothetical external transverse forcef(s) that acts only on
the test chain. I imagine that this force is applied only af
the system has reached its initial equilibrium state, and
then held fixed over a period much less than a reptation ti
during which the topology remains fixed. The probability
finding any specified network topology is thus the same
the presence of this external force as that in the initial eq
librium state. This probability is, in turn, equal to the pro
ability that a network of the specified topology would b
generated by a hypothetical process in which one took
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equilibrated solution of phantom chains and suddenly tur
on the constraint of uncrossability.

The thermal averagêr (s)& of the test chain contour~i.e.,
the average over times much less than the reptation ti!
will be referred to in what follows as the tube contour of t
test chain, and the average contour^r (s)&0 obtained in the
absence of any external force as the unperturbed tube
tour. Transverse displacements of the actual test chain
tour r (s) from the unperturbed tube contour are charact
ized by a two-dimensional~2D! tranverse displacemen
vector

h~s![r ~s!2^r ~s!&0 , ~2!

which is constructed perpendicular tôr (s)&0, so that
h(s)•]^r (s)&0 /]s50. The potential energy associated wi
the external forcef(s) may be written as an integral,

Uext[2TE dsh~s!•f~s!. ~3!

The total potential energy of the network in the presence
this external potential is given by the sum of the bend
energies of the test chain and of all the medium chains, p
Uext .

A. Transverse fluctuations

To characterize transverse fluctuations of a polym
within its tube, one may focus attention on a section of tu
of some length much less thanLp but much greater thanLe ,
within which the tube tangent]^r (s)&/]s remains nearly
constant. Within such a segment,h(s) may be decomposed
into two Cartesian componentsh(s)5(h1(s),h2(s)) associ-
ated with the two directions perpendicular to the local tu
tangent, with corresponding Fourier amplitudes

ha~q![E dseiqsha~s! ~4!

for Cartesian indicesa51,2. The variance ofh(q) in the
absence of any external force, averaged over both ther
fluctuations and network topologies, may be expressed
function of the form

^ha~q!hb~2q!&05
T

TLpq41g~q!
dab . ~5!

The denominator of the right hand side~rhs! may be inter-
preted as a spring constant for transverse modes of w
numberq, in which TLpq4 is a contribution arising from the
bending energy of the test chain, andg(q) is an as-yet-
undetermined,q-dependent effective spring constant that
introduced to characterize the confinement forces aris
from collisions with other polymers.

The width of the tube may be characterized by the va
ance

Re
2[^ha

2~s!&0 ~6!
2-2
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
of either of the two Cartesian components ofh(s) at a ran-
domly chosen point on a randomly chosen chain, which
given by the Fourier integral

Re
25E dq

2p

T

TLpq41g~q!
. ~7!

In what follows, I refer to the standard deviationRe as the
tube radius. The tube diameterDe defined in Refs.@11,12# is
just 2Re .

The entanglement contour lengthLe may be defined
roughly by requiring that the fluctuations of transver
modes of wave numberq@Le

21 are controlled primarily by
the bending energy in Eq.~7!, so thatLpq4@g(q) for qLe

@1, while fluctuations of modes withq!Le
21 are controlled

primarily by confinement forces, so thatLpq4!g(q) for
these longer wavelength modes. This length, which was
ferred to as a ‘‘deflection length’’ by Odijk@1#, may also be
interpreted heuristically as a distance between collisions
the polymer with the ‘‘walls’’ of a confining tube. The tub
radius and entanglement~or deflection! length vary with an
approximate power law relationship@1#,

Le;Re
2/3Lp

1/3. ~8!

In the concentration regime of interest here, whereRe
!Lp , this yields a hierarchyRe!Le!Lp .

B. Plateau modulus

We will be interested in what follows in predicting value
for the macroscopic plateau modulus of the network as w
as the tube radius and related microscopic quantities. To
culate a modulus, one must complete two largely indep
dent steps. The first, which was attempted in Re
@11,12,14#, is to calculate the macroscopic plateau modu
from a tube model in which the fluctuations of the polym
within the tube are characterized by an unspecified func
g(q), as above. The second, which is attempted here, i
calculateg(q) by considering the statistical mechanics of
network of uncrossable chains.

The calculation of the modulus given in Refs.@11,12# was
based on the following physical assumptions.~i! The plateau
modulus of a tightly entangled solution, in the absence
cross-links between chains, arises from the intramolec
curvature stress defined in Ref.@11#. ~ii ! The tube contour
~i.e., thermal average contour! of each chain deforms affinel
under infinitesimal macroscopic deformations of the n
work. ~iii ! The magnitude of the transverse fluctuations
the polymer about its tube contour is unchanged by s
deformations, i.e., the same functiong(q) is used to charac
terize transverse fluctuations in the equilibrium and infi
tesimally deformed states.

The main elements in this calculation are~i! the deriva-
tion of an expression for the stress arising from a sin
chain with a known distribution of chain contours, which
given in Appendix A of Ref.@11#, ~ii ! the calculation of the
thermal average of this stress for a chain that is confine
undergo small transverse fluctuations about a specified
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contour, which is given in Appendix B of the same pap
and ~iii ! the calculation of the average stress induced by
infinitesimal affine deformation of an initially equilibrium
distribution of tube contours, which is given in Appendix
B and C of Ref.@12#. The plateau modulus obtained in th
series of calculations was shown to arise physically fr
deformation of the equilibrium distribution of tube conto
curvatures, and so is referred to here asGcurve . Subject to
the above assumptions, the calculation was carried out
actly, and yields

Gcurve5
7

5

rT

Le
, ~9!

where the inverse entanglement length 1/Le is defined for
this purpose by a Fourier integral

1

Le
[E dq

2p

g~q!

TLpq41g~q!
. ~10!

This definition ofLe will be retained throughout this paper
In Ref. @14#, the calculation of the plateau modulus w

extended by relaxing assumption~iii !, and thus allowing for
the possibility that the cross-sectional dimensions of
tube, as characterized by the elements of the ten
^ha(q)hb(2q)&, may also change in response to a mac
scopic deformation. It was shown there that if assumpt
~iii ! is abandoned, then the plateau modulus may in gen
be expressed as a sum

G5Gcurve1Gdilate ~11!

of the ‘‘tube curvature’’ contributionGcurve given above,
which arises from affine deformation of the thermal avera
chain contour, plus an additional ‘‘tube dilation’’ contribu
tion, which arises instead from disturbance of the equil
rium distribution of transverse fluctuations of the polym
contour about its average. Both contributions originate in
intramolecular curvature stress of the polymer@assumption
~i!#, but arise from different kinds of tube deformation. T
estimate the maximum plausible magnitude of the tube d
tion contribution,G was recalculated in Ref.@14# under the
assumption that the cross-sectional dimensions of the
~defined in terms of the variance ofh) as well as the tube
contour undergo strictly affine deformation. This was fou
to yield a tube dilation contribution

Gdilate.
1

5

rT

Le
, ~12!

which must be added to the value ofGcurve given in Eq.~9!.
Upon comparing Eqs.~12! and ~9!, we see that, while

both contributions toG are of orderT per entanglement, the
numerical prefactor obtained forGdilate happens to be seve
times smaller than that obtained forGcurve . If the deforma-
tion of the tube contour is at all close to affine, we th
expect the modulus to be numerically dominated by the t
curvature contribution, whether or not there is also a sig
cant degree of anisotropic tube dilation. Conversely, if
2-3
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
deformation of the tube contour is far from affine, refineme
of our treatment of the contribution of anisotropic tube di
tion is unlikely to save the theory from quantitative failur
For simplicity, when comparing theoretical predictions forG
to measurements onF-actin, I use Eq.~9! alone for the pla-
teau modulus, thus ignoring any possible anisotropic t
dilation, while keeping in mind that the predicted modul
could be raised by up to about 15% by assuming the e
tence of such an effect. I remain agnostic on the questio
whether a signficant deformation of the tube cross sec
will actually occur in the linear viscoelastic regime. This la
question might in principle be answerable by extending
present theory so as to describe the tranverse fluctuation
a confined polymer in a macroscopically deformed netw
~here, I attempt only to describe fluctuations in the un
formed state!, but this has not been attempted.

C. Confinement potentials

The forces that act to confine a polymer to a tube in eq
librium may be characterized by introducing two closely
lated single-chain thermodynamic potentials, which are
fined briefly below and more formally in Appendix A.

To characterize the forces acting upon a test chain wi
specified conformation in a network of specified topolog
one may define a potential of mean forceAcon f@h# that is a
functional of the displacement fieldh(s). This quantity is
given by the total free energy of the network, excluding t
bending energy of the test chain, in a hypothetical situat
in which the test chain is constrained to follow a specifi
contourr (s). The potential of mean force is thus defined
treating the test chain as an uncrossable, unmoveable th
like obstacle, and integrating over all topologically acce
sible states of the surrounding network of medium cha
The thermal average of the transverse confinement fo
f con f(s) exerted by the test chain upon surrounding cha
via collisions at points is given by the functional derivative

^ f con f,a~s!&5
dAcon f@h#

dha~s!
, ~13!

where ^•••& refers here to a thermal average over fluctu
tions of the surrounding network of medium chains, a
where f con f,a(s) andha(s) are Cartesian components of th
transverse fieldsfcon f(s) andh(s), respectively.

To instead characterize the forces experienced by a fl
tuating semiflexible chain within a network of unspecifi
topology, I consider a situation in which the test chain
allowed to fluctuate, but is subjected to a known transve
force f(s) that yields a corresponding average transverse
placement̂ h(s)&. It is shown in Appendix A that the quan
tity g(q), which is implicitly defined by Eq.~5! for
^ha(q)hb(2q)&0, may also be expressed as a functional
rivative

g~q!5
^ f con f,a~q!&

d^ha~q!&
U

^h&50

, ~14!
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where f con f,a(q) and ha(q) are Fourier components o
f con f,a(s) and ha(s), respectively. In Appendix A, I intro-
duce an effective confinement potentialGcon f@^h&# for this
situation, which is the functional Legendre transform
Acon f@h#, and which may be defined by the requirement th

^ f con f,a~q!&5
dGcon f

d^ha~q!&
. ~15!

By differentiating both sides of Eq.~15! with respect to
^ha(2q)& and comparing to Eq.~14!, we see that

g~q!5
d2Gcon f

d^ha~q!&d^ha~2q!&
U

^h&50

. ~16!

A self-consistent approximation forg(q) may thus be for-
mulated as an approximation for the effective confinem
potentialGcon f@^h&#.

III. OVERVIEW

To calculateGcon f , we must consider the situation show
schematically in Fig. 1, in which a randomly chosen te
chain is embedded in a network, and estimate the transv
force f(s) required to displace the test chain by a specifi
average displacement^h(s)&. The forces opposing displace
ment of the test chain are the result of collisions with
relatively small number of nearby medium chains who
tube contours happen to pass within a distance of orderRe of
the test chain. Any estimate of the average displacemen
the test chain in response to a specified force must rely u
a corresponding estimate of the ease with which these ne
medium chains may be displaced by forces exerted u
them by the test chain. To construct a self-consistent sta
tical mechanical theory, one must require that the degre
mechanical compliance assumed for the medium chains
consistent with the mechanical compliance 1/g(q) calculated
for the test chain. In Secs. IV–VI, I present three differe
self-consistent calculations ofg(q), based upon differen
simplifying approximations for the mechanical complian
of the network of surrounding medium chains. Before plun
ing into details, an overview of the physical content a
qualitative results of each approximation is given below.

FIG. 1. Schematic of a semiflexible test chain embedded i
network of uncrossable medium chains, each of which is itself c
fined to a tube as a result of constraints imposed by other med
chains.
2-4
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
A. Binary collision approximation

The binary collision approximation~BCA! of Sec. IV
gives a rather detailed description of the interaction of
test chain with individual nearby medium chains, but n
glects any effects arising from the collective elastic rela
ation of the network. In the BCA, we imagine that the te
chain is embedded in a thicket of uncrossable but sligh
mobile medium chains. It is assumed that, in the absenc
the test chain, each of the medium chains would itself rem
confined to a tube as a result of its interactions with ot
medium chains, and that the net effect of these interact
between medium chains may be mimicked by a harmo
potential that~in the absence of the test chain! would confine
each medium chain to fluctuate about a preferred tube c
tour. The presence of the test chain then acts to further c
strain the fluctuations of the medium chain within its tube,
forcing the medium chain to remain trapped on one side
the other of the test chain. This constraint may be expres
as a constraint on the range of allowed values for the tra
verse displacement of the medium chain from its prefer
tube contour at the point where the test chain passes clo
to the tube contour of the medium chain. The free ene
associated with the interaction of the test chain with a sin
such medium chain is given by the increase in the fluctua
free energy of the medium chain arising from this topolo
cal constraint. An effective confinement potential for the t
chain is obtained by calculating an appropriate average
this binary interaction free energy over all possible orien
tions and positions of the tube contours of nearby med
chains. The calculation is made self-consistent by requir
that the value ofg(q) thereby calculated for the test cha
~which, in this approximation, is actually independent ofq)
equal that assumed for the surrounding medium chains.

The BCA is found to yield an expression for the tu
radiusRe with the same power law dependences onr andLp
as those predicted by Semenov on the basis of a simple
metrical argument@3#. Semenov’s argument amounted to t
assumption that of order one medium chain should pierce
tube of the test chain per entanglement contour length.
argument may be restated, using reasoning closer to tha
lowed in Sec. IV, as follows: To estimateg, consider the
free energy required to displace the test chain by an ave
distance^h& of order the tube radiusRe . Such a displace-
ment will significantly alter the topological constraints exp
rienced by all medium chains whose tube contour pas
within a distance of orderRe of the unperturbed test chai
contour. Assuming a free energy cost of orderT for each
such nearby chain gives a free energy ofGcon f /L;TrRe per
unit length of test chain for a displacement of this magnitu
whererRe is the number of chains that pierce a cylinder
radiusRe per unit length of the cylinder. If one assumes th
Gcon f is approximately quadratic inh, one obtains a spring
constant

g;Tr/Re . ~17!

By requiring that this expression forg yield g;TLpq4 for
wave numbersq;Le

21 , and using Eq.~8! to relateRe and
Le , one obtains an estimated tube diameter and entan
ment length
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Re;r23/5Lp
21/5,

Le;r22/5Lp
1/5. ~18!

By settingG;rT/Le ~i.e., T per entanglement!, one obtains
a corresponding modulus

G;Tr7/5Lp
21/5. ~19!

These scaling relations have been taken as a starting poi
several recent treatments of tightly entangled solutions
this author@11–13# and several others@5,6,31#.

B. Effective medium approximation

The effective medium approximation~EMA! of Sec. V
starts from a very different point of view, by treating th
network surrounding the test chain as an elastic continu
with a shear modulus equal to the self-consistently de
mined plateau modulus of the solution, and the test chain
a thread embedded in this medium. It is a straightforw
exercise in continuum mechanics~presented below! to show
that the elastic force resisting a sinusoidal transverse
placement of the test chain with wave numberq within a
medium of modulusG may be described by an effectiv
spring constant

g~q!;2G/ ln~qLe! ~20!

that depends linearly onG and, forqLe&1, logarithmically
on q, so thatg(q) vanishes in the limit of smallq.

The lengthLe appears within the logarithm in Eq.~20!
because it has been introduced into the continuum mech
cal calculation as a short-wavelength cutoff length, thus
fectively smearing the forces applied to the chain ove
region with a radius of orderLe around the test chain. It is
straightforward to show that, if the force on the medium
taken to be localized along a mathematical line, then
compliance 1/g(q) diverges logarithmically~like the electro-
static potential for a line charge!, signaling the breakdown o
the continuum approximation at short length scales and
need for a short-wavelength cutoff. It is argued that a cut
length of orderLe is appropriate because of the ability o
single chains to directly transmit forces over distances
order the distanceLe between collisions, before effectivel
distributing them over the network. In Sec. V, I go somewh
beyond this qualitative argument and regularize the calc
tion of g(q) using an approximate description for the dist
bution of forces exerted by the few ‘‘primary’’ medium
chains, which pass close enough to the test chain to co
directly with it, upon ‘‘secondary’’ medium chains, whic
confine the primary chains, and then use the continuum
proximation only to describe the response of the surround
network of secondary chains. The results are similar to th
obtained byad hoc introduction of a cutoff length of orde
Le .

Self-consistent estimates ofRe andG may be obtained in
the EMA by requiring thatg(q);G;Lpq4 for wave num-
2-5
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
bers q;1/Le , and thatG;rT/Le . These conditions, to
gether with Eq.~20! for g(q) and Eq. ~8! for Le , yield
power laws

Re;r21/2,

Le;r21/3Lp
1/3,

G;Tr4/3Lp
21/3. ~21!

In the more detailed calculation presented in Sec. V, I s
stitute a value ofg(q) that is calculated from a continuum
mechanical treatment of the medium into Eqs.~9! and ~10!
for G, and thereby obtain an integral equation for the mo
lus G. The solutions of this integral equation are shown
exactly obey the scaling laws given in Eq.~21!, with numeri-
cal prefactors that depend weakly~i.e., logarithmically! upon
the cutoff length used to regularize the divergence of
network strain near the test chain.

Note that the EMA scaling exponents given in Eq.~21!
are different from those predicted by the BCA, which a
given in Eq.~18!, and so are different from those assumed
be correct in all of the recent theoretical work on the sour
of elasticity in these solutions. This raises the question
which theoretical approach~if either! gives the correct
asymptotic scaling in the limitrLp

2@1 that both the BCA
and EMA are intended to described. Because these two
proaches describe two essentially independent mechan
for displacement of the test chain~i.e., displacement of the
test chain relative to the average displacement of a part
frozen environment in the BCA and collective elastic d
placement of that environment in the EMA!, the tube diam-
eter is presumably controlled by whichever mechanism p
dicts a larger tube diameter. In the limitrLp

2 of interest, the
EMA prediction for the tube radius is larger than the BC
prediction by a factor proportional to (rLp

2)1/10, suggesting
that it is actually the EMA that yields the correct asympto
scaling in the limit of extremely tightly entangled chains.
is important to note, however, that the values of the ex
nents obtained in these two approaches are numerically q
close ~e.g., G}r1.33 vs G}r1.4), so that the competing
physical mechanisms assumed in these two approaches
remain comparable in importance at all but truly enormo
values ofrLp

2 .

C. Elastic network approximation

In Sec. VI, I consider an elastic network approximati
~ENA! that attempts to integrate the binary collision and
fective medium approaches. In this approximation, the av
age displacement of the test chain in response to an exte
force is expressed as a sum of two contributions:~i! a local
displacement of the test chain relative to its immediate en
ronment, as defined by the tube contours of nearby med
chains, and~ii ! a collective elastic displacement of the su
rounding network in response to the forces exerted upo
by the test chain. The local displacement of the test ch
relative to its environment is treated using the binary co
sion approximation, and the elastic displacement of its en
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ronment is treated in an effective medium approximatio
This allows the different mechanisms of transverse displa
ment upon which the simpler BCA and EMA models a
based to act in parallel. The resulting model is made s
consistent by requiring that the values ofG andRe obtained
by using the calculated value ofg(q) in Eq. ~7! for Re and in
Eqs.~9! and~10! for G both be consistent with those used
inputs to the calculation ofg(q). The ENA yields a tube
radius that is always somewhat larger than that predicted
either the BCA or EMA separately, with no simple pow
law dependence on concentration. All predictions of t
ENA converge to the corresponding predictions of the EM
in the limit rLp

2→`, but remain significantly different at the
values ofrLp

2;104 typical of recent experiments onF-actin
solutions.

IV. BINARY COLLISION APPROXIMATION

In the binary collision approximation, we focus primari
on describing the interaction of the test chain and a sin
nearby medium chain. The contour of the medium chain
interest is denoted byr̃ ( s̃), wheres̃ is a contour length along
the medium chain.

The central assumption of the BCA is that, in the abse
of the test chain, each medium chain of interest would
main confined to a tube as the result of constraints impo
upon it by other medium chains. To characterize these c
straints, it is useful to consider a hypothetical situation
which the test chain and a single medium chain of inter
are noninteracting, and so may pass freely through one
other, but in which every other pair of polymers remai
mutually uncrossable and retain the same topological r
tionships as in the physical situation of interest. This hyp
thetical state will be referred to as the ‘‘transparent state’’
the specified medium chain. The transparent state rem
well defined when an external forcef(s) is exerted on the
test chain, in which case the force on the test chain mus
transmitted to the network via collisions with medium chai
other than the one of immediate interest. In what follow
thermal averages evaluated in the transparent state are
noted by^•••& t , and averages evaluated in the unperturb
transparent state, withf(s)50, by ^•••& t,0 .

The thermal averagêr ( s̃)& t of a medium chain in its
transparent state will be referred to in what follows as
preferred tube contour.~It is ‘‘preferred’’ in the sense that
this is the tube contour that would be obtained if the medi
chain were allowed to cut through the test chain.! Deviations
of the medium chain contour from its preferred tube conto
are characterized by a transverse displacement field

h̃~ s̃![ r̃ ~s!2^ r̃ ~ s̃!& t ~22!

constructed perpendicular to the tube tangent vec
]^ r̃ ( s̃)& t /] s̃. As discussed below, the presence of an u
crossable test chain acts simply to constrain the range
topologically accessible values ofh̃( s̃) at the point of closest
approach between the test chain and the preferred tube
tour ^ r̃ ( s̃)& t .
2-6
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
The binary collision approximation is based upon the f
lowing simplifying approximations for the distribution o
medium chain contours in the transparent state.

~i! The distribution of values ofh̃( s̃) in the transparen
state is approximated by a Gaussian functional with a v
ance given by Eq.~5!. This is equivalent to assuming tha
each medium chain is confined by a harmonic potential

Acon f@ h̃#5E dq

2p
g~q!uh̃~q!u2, ~23!

with a self-consistently determined value forg(q).
~ii ! The preferred tube contour̂r̃ ( s̃)& t of the medium

chain is taken to remain unchanged when an external fo
f(s) is exerted on the test chain, i.e., we take^ r̃ ( s̃)& t

5^ r̃ ( s̃)& t,0 .
Approximation ~ii ! is equivalent to saying that the con

finement potential experienced by each medium chain in
transparent state, which represents the forces exerted up
by other medium chains, remains unchanged when the
chain is displaced by an external force. It is this approxim
tion that allows one to convert the many-chain problem i
a tractable two-chain problem, in which we imagine that
test chain is embedded in a thicket of noninteracting med
chains, each of which fluctuates in a static harmonic pot
tial. The same assumption also, however, prevents the B
from taking into account any collective elastic relaxation
the surrounding network, whereby a force exerted by the
chain on one medium chain may be transmitted through
network and cause a shift in the preferred tube cont

^ r̃ ( s̃)& t of another. The binary collision approximation thu
describes the fluctuations of a test chain in a partially fro
environment, in which the tube contours of the surround
medium chains remain frozen when the test chain is
placed.

Another simplifying feature of the BCA is that the ave
age restoring forces are nearly local functionals ofh(s), and
so may be characterized by aq-independent value forg(q).
In the BCA, the forces on a test chain arise from collisio
with medium chains whose tube contours pass close to
test chain at randomly located points along its length. Co
sions between the test chain and any single medium c
are localized within a region of sizeRe along either chain,
which is much smaller than the typical distanceLe between
collisions. Interactions between chains may thus be treate
pointlike binary interactions occurring at uncorrelated poi
along the test chain. Such interactions give rise to an ave
restoring force at each point that depends only on transv
displacement at that point, and, correspondingly, to
q-independent value forg(q). We may thus calculateg(q)
in the BCA by considering only the response to a spatia
uniform forcef, to obtaing(q50).

In Sec. IV A, we calculate the BCA effective potential b
considering the free energy required to displace a very l
rigid rod inserted at random into a solution of semiflexib
medium chains. The use of a long, rigid test chain simplifi
the calculation, by allowing us to ignore thermal fluctuatio
of the test chain. A closely analogous calculation for t
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physically relevant case in which both the test and the m
dium chains are fluctuating semiflexible chains is given
Appendix B. The results of this refined calculation are d
cussed in Sec. IV B.

A. Confinement of a rigid test rod

To calculate the confinement potential for a rigid test ro
one may consider a hypothetical process in which a th
uncrossable rod of lengthL!Le is first inserted into an en
tangled solution, the solution is then allowed to equilibra
for many reptation times while the test rod remains stati
ary, and the test rod is then subjected to a uniform tra
verse displacementh of magnitudeh[uhu from its initial
position. The effective potential is given by the resultin
increase in the free energy of the surrounding network. In
limit L→`, we need not distinguish between the potential
mean forceAcon f(h) obtained for a rod subjected to a spec
fied uniform displacementh and the effective potentia
Gcon f(h) obtained for a rod subjected to a uniform forcef
that is chosen so as to give the same average displace
h[u^h&u, because the heterogeneities in the local envir
ment of the test rod become self-averaging for a sufficien
long rod, and because the spontaneous thermal fluctua
of the rod’s position vanish in this limit, allowing us to trea
h andAcon f(h) as macroscopic thermodynamic variables. N
equally simple statement can be made about the relation
betweenAcon f@h# andGcon f@^h&# for a fluctuating semiflex-
ible test chain.

Consider the interaction of a test rodr (s) with a nearby
medium chain with a tube contour^ r̃ ( s̃)& t . The test rod is
assumed to have a constant unit tangent vectoru, and to
follow the straight line

r ~s!5su1h, ~24!

whereh is a uniform transverse displacement of the rod fro
its initial position. The tube contour of the medium chain
assumed to have a unit tangent vectorũ[d^ r̃ ( s̃)& t /ds̃ at the
point where^ r̃ ( s̃)& t passes its closest approach to the init
contour r (s)5su of the test rod. The orientationsũ and
2ũ are physically indistinguishable, and so by conventi
we will always defineũ so as to giveũ•u>0. The preferred
tube contour of the medium chain may be approximated n
this point of closest approach by a straight line

^ r̃ ~ s̃! & t5s0u1c0ẽ11 s̃ ũ. ~25!

Here,uc0u is the distance of closest approach from the init
test rod contourr (s)5sũ,

ẽ1[
u3ũ

uu3ũu
~26!

is a unit vector constructed perpendicular to bothr (s) and

^ r̃ ( s̃)& t at their point of closest approach, ands0u is the
closest point on the initial test chain contour. The distance
2-7
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
closest approach between^ r̃ ( s̃)& t and the displaced test rod
whenh5” 0, is given byucu, where

c[c02h1 ~27!

and whereh1[h•ẽ1.
In the physical situation of interest, the presence of

uncrossable test rod constrains the allowed values ofh̃( s̃) at
the point of closest approach ofr (s) and ^ r̃ ( s̃)& t . To de-
scribe this, it is convenient to decomposeh̃( s̃) into Cartesian
components as

h̃~ s̃!5h̃1~ s̃!ẽ11h̃2~ s̃!ẽ2 , ~28!

whereẽ2[ũ3ẽ1 is a second unit vector constructed perpe
dicular toũ. The presence of the test rod constrains the va
of componenth̃1 at the point of closest approach to either
two possible ranges, corresponding to two different poss
topological states: Eitherh̃1.2c, in which case the chain is
trapped in what will be called the1 state, orh̃1,2c, and
the chain is trapped in the2 state~see Fig. 2!.

We may calculate the conditional probability that a m
dium chain with a known preferred tube contour^ r̃ ( s̃)& t will
be found in the1 or 2 topological states as follows. In th
initial fully equilibrated state, withh50, the network is re-
stricted to a set of microstates consistent with a certain
domly chosen topology, but the relative probabilities of d
ferent possible topologies are the same as those expecte
a solution of noninteracting chains. The presence of an
crossable test rod divides the set of microstates accessib
the system in the transparent state of a given medium c
into two subsets, corresponding to two different topolog
of the network that differ only in the topological relationsh

FIG. 2. Geometry for an uncrossable test rod with unit tang
vectoru ~vertical thick line! near its point of closest approach to th

preferred tube contour̂ r̃ ( s̃)& t with a local tangentũ ~dotted line
along the axis of the cylindrical tube! of a nearby medium chain
Two possible contours for the fluctuating medium chain, in the1
and2 topological states, are shown by curved solid lines.
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of the test rod and the single medium chain of interest, wh
we refer to as the1 and2 states. The relative probabilitie
of finding the network in either of these two topologies a
thus given by the relative probabilities of trapping the m
dium chain in the1 or 2 states by a hypothetical process
which the network is first equilibrated in the transparent st
and the test chain is then suddenly made uncrossable,
they are given by the thermal equilibrium probabilities
finding h̃1.2c or h̃1,2c in the transparent state.

Let P(h̃1) denote the conditional probability that in th
transparent stateh̃1 will take on a specified value at the poin
of closest approach between^ r̃ ( s̃)& t andr (s), for a medium
chain with a known tube contour^ r̃ ( s̃)& t . The correspond-
ing conditional probabilityp1 that the chain will be trapped
in the 1 state is thus given by the probability thath̃1.
2c0 at this point in the transparent state, i.e.,

p1~c0!5E
2c0

`

dh̃1P~ h̃1!. ~29!

The corresponding probability of finding the chain in th
2 state isp2(c0)512p1(c0). In what follows, we ap-
proximate the probability distributionP(h̃) for either Carte-
sian component ofh̃( s̃) in the tranparent state by a Gaussi
distribution

P~ h̃a!5
1

A2pRe

e2h̃a
2 /2Re

2
. ~30!

This yields corresponding probabilities

p6~c0!5FS 6
c0

Re
D , ~31!

where

F~x![E
2x

` dy

A2p
e2y2/2 ~32!

is a normal distribution function.
The increase in the single-chain fluctuation free energy

the medium chain due to the presence of an uncrossable
chain, relative to that in the transparent state, is given fo
chain trapped in either the1 or 2 configuration by a func-
tion

a6~c!52T ln FS 6
c

Re
D ~33!

of the separationc5c02h1 given in Eq.~27!. The magni-
tude of the average force exerted between the test rod an
specified medium chain, in either possible topological sta
is given by the derivative

^ f 6&5
]a6

dh1
U

c0

, ~34!

t

2-8
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
where^•••& is used here to indicate an average over ther
fluctuations of the medium chain in the presence of an
crossable test rod. The average of this force over the
possible topological states may be expressed as the c
sponding derivative

^ f &5
]a

]h1
U

c0

~35!

of an average binary interaction free energy

a~c,c0![p2~c0!a2~c!1p1~c0!a1~c!. ~36!

Note that, because the topological state of the network c
not change as a result of the displacement of the test ch
the probabilitiesp6(c0) depend only upon the initial dis
tance of closest approachc0 between the test rod and th
preferred tube contour of the medium chain, while the f
energiesa6(c) depend upon the corresponding distancec
obtained after displacement of the test chain.

The total effective potential experienced by the test rod
obtained in the BCA by averaging the binary interaction fr
energya(c,c0) over all possible orientations and positions
the preferred tube contours of nearby medium chains. T
average may be expressed as the integral

Gcon f~h!5LE
2`

`

dc0E dũ r~ ũ,c0!a~c,c0!, ~37!

whereũ is integrated over half of the unit circle, and whe
r(ũ,c0)dũdc0 is the average number of medium chains p
unit length of the test chain with tube contour orientatio
that lie within an infinitesimal range of solid anglesdũ and
values ofc0 within an infinitesimal rangedc0. If the tube
contours of the medium chains are assumed to have ran
positions and orientations, then

r~ ũ,c0!5
1

2p
r sin~u!, ~38!

where cos(u)[ũ•u, and wherer is the total density of con-
tour length per volume.

Using Eqs.~37! and ~38!, the free energy difference

DGcon f~h![Gcon f~h!2Gcon f~0! ~39!

arising from a transverse displacementh may be expressed
as a function of the form

DGcon f~h!5LTrReFS h

Re
D , ~40!

where

F~x![2
1

8E2`

`

dy0E
0

2p

dfH F~2y0!lnS F~2y!

F~2y0! D
1F~y0!lnS F~y!

F~y0! D J , ~41!
03150
al
-
o
re-

n-
in,

e

s
e

is

r
s

m

in which y[y02cos(f)x. In the above, x5h/Re , y0
5c0 /Re , y5c/Re , and cos(f)5h1 /h.

The function F(x) has been calculated by numerical
evaluating the integrals in Eq.~41!, and is shown in Fig. 3.
The function is well approximated over the physically re
evant range of displacmentsx&1 by a parabola

F~x!.ax2 ~42!

with a.0.36. The harmonic approximation that we used
the effective potential of the medium chains~which was
originally chosen for mathematical simplicity! is thus found
to be surprisingly close to the shape predicted by the BC

B. Confinement of a semiflexible chain

An analogous calculation is given in Appendix B for th
effective potentialG(^h&) experienced by a semiflexible te
chain subjected to a specified external force. The calcula
differs from that given above for a rigid test rod in that w
treat the test and medium chain on a more equal footing
allowing the test chain also to undergo thermal fluctuatio
within a tube.

It is found that the only effect of this change is to increa
the characteristic width of the potential found above by
factor of A2, without changing its form: The calculated e
fective potential for a semiflexible test chain is

DGcon f~h!5LTrReFS h

A2Re
D , ~43!

whereh[u^h&u, and whereF(x) is the function defined in
Eq. ~41!. If F(x) is again approximated by Eq.~42!, then one
obtains a confinement potential

DGcon f~h!. 1
2 L~aTr/Re!u^h&u2 ~44!

and a corresponding approximation forg(q) as

FIG. 3. The functionF(x) defined in Eq.~41! ~solid line!, the
harmonic approximationF(x).0.36x2 of Eq. ~42! ~long-dashed
line!, and the Gaussian distributionP(h/Re) ~short-dashed line!.
2-9
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
g~q!5aTr/Re . ~45!

The net effect of taking into account the semiflexibility
the test chain is thus to decrease theq-independent effective
spring constantg by a factor of 2, relative to that obtaine
for a rigid test rod.

This softening of the effective potential for a semiflexib
chain is a result of the fact that in Appendix B the test ch
has been allowed to bend so as to avoid nearby med
chains, as well as the reverse. The observation that the w
of the effective potential depends upon the flexibility of t
test chain, as well as that of the medium chains, is consis
with the observation that the tube diameter would shrink
zero in the case of an infinitely long rigid test rod in a n
work of infinite rigid rods, but would remain nonzero fo
either a rigid test rod in a network of semiflexible chains
a semiflexible test chain in a network of rigid rods.

C. Self-consistent solution

A self-consistent approximation forRe may be obtained
by substituting Eq.~45! for g(q) into Eq. ~7! for Re . This
yields an integral equation forRe as

Re
25E dq

2p

1

Lpq41ar/Re

. ~46!

By analytically completing the above integral, solving f
Re , and using the resulting value forg(q) in Eq. ~10! for
Le , one obtains

Re5Lp~4arLp
2!23/5,

Le5LpS a

8
rLp

2D 22/5

, ~47!

giving

Re.0.80r23/5Lp
21/5, ~48!

G.0.40Tr7/5Lp
21/5 ~49!

for a50.36. As noted in Sec. II, the exponents in the abo
are the same as those obtained by Semenov@3# by a simple
geometrical argument. Here, however, we have also obta
estimates of the prefactors.

V. EFFECTIVE MEDIUM APPROXIMATION

In the effective medium approximation, we treat the n
work surrounding the test chain as an elastic continuum w
a shear modulus equal to the plateau modulus of the solu
and assume that the test chain rigidly follows any displ
ment of this medium. To calculateg(q), we consider a situ-
ation in which the test chain is subjected to an external fo
f(s) that contains only a single nonzero Fourier amplitu
f(q), and use continuum mechanics to calculate the resul
displacement amplitudeh(q), settingf(q)5g(q)h(q) to de-
fine g(q).
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A. Continuum mechanics

The three-dimensional~3D! displacement of the elasti
medium is described by a vector fieldU(r ), wherer is a 3D
position. We assume that the test chain is rigidly embed
in the medium along the liner (s)5su, so that the displace
ment h(s) of the chain is given~in the linear response re
gime! by the value

h~s![U~su! ~50!

of the 3D displacement field evaluated along this line. T
elastic energy of the isotropic medium may be expresse
the standard form

E5 1
2 E dr H 2G(

i j
~e i j !

21~B2 2
3 G!S (

i
e i i D 2J , ~51!

wheree i j 5(]U j /]r i1]Ui /]r j ) is the strain tensor, andG
and B are the shear modulus and isotropic compress
modulus of the medium, respectively. In the present cont
G andB are given by the plateau values of the shear modu
and the osmotic compression modulus of the entangled s
tion, as measured when the solution is subjected to a de
mation with a characteristic frequency lying within the pl
teau regime ofG8(v), where the stress is dominated by th
curvature stress. In the molecular theory presented in R
@11#, it was found that the curvature stress is described b
traceless tensor, implying that the curvature contributions
B vanishes identically. In the limit of infinitely thin chains
where excluded volume contributions toB are also negli-
gible, we may thus setB50.

The 3D Fourier transform of the displacement field i
duced by an arbitrary force distributionF(r ) exerted on the
continuum is given, forB50, by

U~k!5
1

Guku2
$d2 1

4 k̂3 k̂%•F~k!, ~52!

whereU(k) and F(k) are 3D Fourier components ofU(r )
andF(r ), andk̂[k/uku. The corresponding result for the 1D
Fourier transformh(q) of the chain displacementh(s)
[U(su) is given by the 2D Fourier integral

h~q!5E d2k'

~2p!2

1

Guku2
$d2 1

4 k̂3 k̂%•F~k!, ~53!

in which k[uq1k' and k̂[k/uku, wherek'•u50.

B. Force distribution

In the above, we have calculated the displacement al
the axisr5us for an elastic continuum subjected to an arb
trary force distributionF(r ). The only choice for the force
distributionF(r ) that is consistent with our naive picture o
the test chain as an infinitely thin thread embedded in
medium is one in which the force is transmitted to the m
dium at points lying exactly on liner5su, giving
2-10
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
F~r !5E dsd~r2us!3fcon f~s!, ~54!

or, equivalently,F(k)5(2p)2fcon f(k•u). It is straightfor-
ward to confirm, however, that the use of such a singular
distribution in Eq.~53! would lead to a logarithmically di-
vergent value forh(q). In real space, the displacement fie
U(r ) induced by a line distribution of force that oscillate
with wave numberq along the test chain may be shown
vary logarithmically with the distancer from the test chain
for qr&1 and to decay exponentially forqr*1, and thus
~like the electrostatic potential induced by a line charge! to
diverge along the axisr5su. To control this short-
wavelength divergence, we are forced to introduce a cu
length, below which the continuum approximation is a
sumed to break down. By removing short-wavelength co
ponents ofF(k), such a cutoff will effectively smear the
applied force over a region of nonzero radius around the
chain.

Physical considerations suggest that this cutoff len
should be taken to be of order the entanglement lengthLe .
Forces exerted on a chain may be transmitted along its b
bone over distances of order the distanceLe between colli-
sions with other chains or~equivalently! the walls of its tube,
indicating that the network cannot be treated as a continu
over length scales less thanLe . A more detailed consider
ation of how the external force exerted on the test chain
distributed via binary collisions to the surrounding netwo
also suggests a possible reinterpretation of the continu
theory, which will be developed further in the elastic ne
work model of Sec. VI: The forces exerted by a test ch
upon its surroundings are first transmitted by binary collsio
to a relatively small set of chains, referred to here as ‘‘p
mary’’ medium chains, whose tube contours happen to p
within a distance of orderRe of the test chain. The force
exerted on the primary medium chains by the test chain
balanced by forces exerted upon the primary chains by ‘‘s
ondary’’ medium chains, which form the walls of the tub
that confine the primary chains. The net effect of collisio
between primary and secondary chains is mimicked in
binary collision approximation by the introduction of a co
finement potential for each of the primary medium chai
The forces exerted between primary and secondary med
chains ~or, equivalently, between primary medium chai
and the walls of their tubes! are distributed along the contou
of each primary medium chain over distances of orderLe
away from the point of interaction with the test chain. T
divergence in the effective medium theory may thus be
moved in a natural way if we reinterpret the forceF(r ) as an
ensemble average of the forces exerted between primary
secondary medium chains, rather than as an average o
force exerted by the test chain upon primary chains. In
EMA, this reinterpretation ofF(r ) is introduced merely as a
way of regularizing the continuum mechanical calculation
which I continue to assume that the test chain rigidly follo
the calculated displacementU(r ) of the continuum. In the
elastic network approximation of of Sec. VI, I will take th
reinterpretation more seriously, by interpreting the co
tinuum displacementU(r ) as an average displacement of t
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secondary medium chains, and thus allowing the displa
ment of the test chain to differ from that of the continuum

In Appendix B, I present an approximate calculation
the distribution of forces exerted by the primary mediu
chains upon secondary medium chains that confine th
based on the above ideas. I obtain an approximate force
tribution of the form

F~r !5E dsx~r2su!3fcon f~s!, ~55!

in whichx(r ) is a distribution function~specified below! that
drops off rapidly forur u*Le , which serves to redistribute th
force f(s) over a region of radiusLe around the test chain
and which satisfies the normalization condition*drx(r )
51. The approximation introduced in Appendix B yields
distribution function with a 3D Fourier transform

x~k!5E dũ

2p

ge

TLp~k•ũ!41ge

, ~56!

in which ũ is a medium chain orientation that varies ov
half of the unit sphere, andge is an approximation forg(q)
as a q-independent constantge5TLpqe

4 , where qe

[223/2/Le .
Any force of the form given in Eq.~55!, when substituted

in Eq. ~53!, will yield a displacement of the formh(q)
5f(q)/g(q), where

g~q!5G/H~q! ~57!

and where

H~q!5E d2k'

~2p!2

x~k!

uku2
uku22 1

8 uk'u2

uku2
~58!

is a dimensionless compliance, in whichx(k) is the 3D
transform ofx(r ). A qualitative understanding of theq de-
pendence ofH(q) may be obtained by replacingx(k) by a
sharp cutoff that suppresses all wave vectors withuku
.1/Le . This yields limiting behaviors

H~q!.H 27/8

2p
ln~qLe!, qLe!1

0, qLe@1.

~59!

The logarithmic divergence ofH(q) in the limit of smallq,
which is generic, is a reflection of the fact that the displa
ment field induced by a force of wave numberq varies loga-
rithmically with distancer from the test chain for allLe&r
&q21, and thus extends to points far from the test cha
Use of approximation~56! for x(k) in Eq. ~58! results in a
dimensionless complianceH(q) that is well approximated
for all qLe&25 by the function

H~q!.
7/8

4p
lnS 11~q/qe!

2

~q/qe!
2 D 1

0.141

11~q/qe!
1.5/2

, ~60!
2-11
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
as shown in Fig. 4, which has the low and highq limiting
behaviors given in Eq.~59!.

C. Self-consistent solution

The EMA, with any choice for the distribution functio
x, may be made self-consistent by using Eq.~57! for g(q)
~which is the result of a continuum mechanical calculatio!
in Eqs.~9! and~10! for G ~which are the results of a molecu
lar theory!, and then requiring that the prediction of the m
lecular theory forG agree with the value assumed for th
surrounding medium. This yields an integral equation forG
as

G5
7rT

5 E dq

2p

G/H~q!

TLpq41G/H~q!
. ~61!

If H(q) may be expressed as a functionH(q)5Ĥ(qLe) of
x[qLe , then Eq.~61! may be nondimensionalized to obta
the integral equation

15E dx

2p F5

7

Lp

rLe
3
Ĥ~x!x411G21

. ~62!

The solution of Eq.~62! yields a constant numerical valu
for the dimensionless ratioLp /(rLe

3), thus giving an en-
tanglement length

Le}Lp
1/3r21/3, ~63!

with a numerical prefactor whose value depends upon
exact functional form used forĤ(x). By using the resulting
value forLe in Eq. ~9! for G and Eq.~7! for Re , we obtain
expressions forG andRe that generically vary withr andLp
with the power law exponents given in Eq.~21!. The numeri-

FIG. 4. FunctionH defined by Eqs.~56! and ~58! ~solid line!,
plotted as a function ofqLe523/2q/qe , and the analytic approxi-
mation given in Eq.~60! ~dashed line!.
03150
e

cal prefactors depend weakly upon the exact form used
H(q). Using approximation~60! for H(q) and numerically
solving Eq.~62! yields

Re.0.42r21/2, ~64!

G.0.82Tr4/3Lp
21/3 ~65!

for the tube radius and modulus.

VI. ELASTIC NETWORK APPROXIMATION

The elastic network model is an attempt to combine
virtues and avoid the most obvious defects of the bin
collision and effective medium approaches. The BCA yie
a rather detailed description of the motion of a test chain i
partially frozen local environment. The effective medium a
proximation allows the environment of a test chain to defo
like an elastic continuum, but then unrealistically forces t
test chain to rigidly follow the surrounding continuum.
better model should allow both for the elastic deformation
the surrounding network~which is found to dominate the
displacement at sufficiently smallq) and for a local displace-
ment of the test chain relative to that of neighboring chai

In the ENA, the average displacement of a test chain
response to an external forcef is expressed as the sum

^h~q!&5^hlocal~q!&1^hcoll~q!& ~66!

of a collective elastic displacement^hcoll(q)& of the environ-
ment of the test chain, plus a local displacement^hlocal(q)&
of the test chain relative to that of its environment. The c
lective displacement̂hcoll(q)& is understood in the ENA to
represent an average displacement of the preferred tube
tours of the primary medium chains. Correspondingly,
local displacement is understood to represent a displacem
of the test chain relative to that of the preferred tube conto
of the primary medium chains. This local displacement m
be approximated using the results of the BCA, which d
scribes the displacement of the test chain in an environm
in which the preferred tube contours of the primary mediu
chains remain frozen when a force is exerted on the
chain. We thus set

^hlocal~q!&5fcon f~q!/gBCA~q!, ~67!

wheregBCA(q)[ar/Re is the BCA approximation forg(q)
given in Eq.~45!. Correspondingly, the collective displace
ment of the preferred tube contours of primary mediu
chains, which reflect only the interactions between prim
and secondary medium chains, may be treated in an effec
medium approximation, in which the forceF(r ) exerted on
the medium is properly understood to represent an averag
the force exerted by primary medium chains upon the s
ondary chains that confine them. We thus set

^hcoll~q!&5fcon f~q!/gEMA~q!, ~68!

where gEMA(q)5G/H(q) is the EMA approximation for
g(q) given in Eq.~57!, which was calculated using a distr
2-12
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bution of forces appropriate to this interpretation. The EN
thus uses the continuum approximation only to describe e
tic relaxation of the preferred tube contours of the prima
medium chains~rather than that of the test chain itself!,
while using the BCA to describe the additional local d
placement of the test chain.

Adding these two contributions yields a total displac
ment of the formh(q)5fcon f(q)/g(q), with a total compli-
ance

1

g~q!
5

1

gEMA~q!
1

1

gBCA~q!
~69!

in which the two mechanisms of displacement act in para
Using explicit results forgEMA(q) andgBCA(q) yields

1

g~q!
5

H~q!

G
1

Re

ar
. ~70!

BecauseH(q) diverges logarithmically forqLe!1, the cal-
culated compliance 1/g(q) is dominated in the low-q limit
by the first term, representing the elastic deformation of
network. In this limit, the elastic deformation is spread ov
a distanceq21@1, and so the continuum approximation
also expected to become increasingly accurate. In the o
site short-wavelength limitqLe@1, H(q) vanishes, and
the compliance is instead dominated by the second te
representing the local displacement of the test chain.

To make the ENA self-consistent, we substitute Eq.~70!
for g(q) into Eq.~7! for Re and Eqs.~9! and~10! for G, and
require that the calculated values ofRe andG be consistent
with those assumed for the medium chains in the calcula
of gBCA(q), and for the continuum in the calculation o
gEMA(q), respectively. The resulting pair of coupled integ
equations must be solved numerically, and does not yie
simple power law dependence forRe or G on r andLp .

Predictions of the BCA, EMA, and ENA for the ratio
Re /Lp and Le /Lp are shown in Fig. 5 as functions of th
dimensionless concentrationrLp

2 . Because the ENA allows
local and collective displacement mechanisms to act in p
allel, the ENA always yields the largest of the three valu
for Re or Le . The ENA results converge to the EMA resul
at very high values ofrLp

2 , but the BCA predictions forRe

and Le remain larger than the asymptotically correct EM
values until rather large values ofrLp

2 . The crossover of the
BCA and EMA predictions forLe occurs at much highe
values ofrLp

2 than the crossover forRe , because Eq.~10!
for Le is less sensitive to the logarithmic low-q softening of
g(q) than is Eq.~7! for Re . At values ofrLp

2;104 typical of
the F-actin solutions discussed below,Le is about one order
of magnitude larger thanRe and one order of magnitud
smaller thanLp .

The ENA predictions for the ratioLe /Lp do not drop to
values significantly below unity until rather large values
rLp

2 , e.g., Le /Lp.0.5 for rLp
25102. This suggests that a

well defined tightly entangled regime, withLe!Lp , can oc-
cur only for very large values ofrLp

2 . If so, there must exis
a very wide crossover between the regions of validity of
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original tube model of flexible chains, which is strictly vali
only for Lp!Le , and that of the present model, which
valid for Le!Lp . Much of the available data on isotropi
solutions of long wormlike chains on systems with values
Lp /d smaller than that found forF-actin could fall into this
crossover regime. The present model is expected to unde
timateLe /Lp for small values ofrLp

2 , since the weak con-
centration dependence ofLe}r2(0.420.5) obtained here mus
eventually cross over to the steeperLe}r21.3 or G}r2.3 de-
pendence that is found for semidilute solutions of flexib
chains.

One weakness shared by the ENA and EMA is that
predictions of both approximations depend upon the va
chosen for a cutoff length used to regularize the continu
mechanical description of the strain field around a test ch
I have relied here upon a physical picture of the mechan
of force transmission over short distances within a netw
that suggests a cutoff length of orderLe , and, in Appendix
C, have tried to translate this picture into a well defin
regularization scheme. A very different argument for t
magnitude of such a cutoff length has been given by Mag
in a discussion of the deformation induced by displaceme
of a very small bead embedded in a network of semiflexi
chains@8#, who argued for the breakdown of continuum ela
ticity below a larger cutoff length of orderALeLp. For the
F-actin solutions considered below, for which I findLp
;10Le , Maggs’s result would suggest the use of a cut
length several times larger than that used above, wit
weaker dependence on concentration. Without trying her
resolve the discrepancy between these estimates, I will n
that the predictions of the ENA do not depend very stron
on the choice of a value for the cutoff length, for two re
sons. First, the quantitygEMA(q)5G/H(q) that is obtained
from continuum mechanics depends only logarithmically

FIG. 5. Predicted values of the dimensionless tube radiusRe /Lp

and entanglement lengthLe /Lp vs dimensionless concentratio
rLp

2 . The upper three lines are values ofLe /Lp and the lower three
are values ofRe /Lp , as predicted by the elastic network mod
~solid line!, the binary collision approximation~long-dashed line!,
and the effective medium approximation~short-dashed line!.
2-13
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
the cutoff length, as shown in Eq.~59!, whereLe appears
within a logarithm. The EMA prediction of a power lawLe
}r21/3 is a consequence of the algebraic dependence oG
upon Le , rather than the logarithmic dependence ofH(q)
uponLe , and would be modified only by logarithmic corre
tions if a cutoff length proportional toALeLp were used in
place of one proportional toLe . Second, the use of a large
cutoff length in the calculation ofgEMA(q) would decrease
the collective contribution to the total ENA complianc
1/g(q) in Eq. ~70!, but cannot cause the ENA compliance
drop below that obtained from the BCA alone. For para
eters typical ofF-actin solutions at experimentally releva
concentrations~discussed below!, it is found that the BCA
and ENA predictions forLe differ by only about a factor of
2, which further limits the sensitivity of the ENA prediction
for F-actin to increases in the choice of cutoff length.

VII. F-ACTIN SOLUTIONS

Solutions of actin protein filaments (F-actin! are so far
unique in that~i! the filaments are sufficiently long, stiff, an
thin to be able to form isotropic solutions withrLp

2.104 and
L;Lp.10Le , placing them well within the tightly en-
tangled concentration regime, and~ii ! independent measure
ments are available of the persistence length, the tube d
eter ~both measured by fluoresence microscopy!, and the
plateau modulus~measured by both mechanical and optic
rheometry!. That these solutions are tightly entangled
graphically confirmed by fluoresence micrographs that sh
confinement of filaments many micrometers long, with p
sistence lengths of order 10mm, to tubelike regions that ar
only a few tenths of a micrometer across@21,22#. In this
section, theoretical predictions are compared to experime
measurements of bothRe andG in F-actin solutions.

A. Persistence length and diffusivity

I begin by reviewing measurements of the persiste
length and tangential diffusivity by fluoresence microsco
which are needed as inputs to the theory.

The persistence length ofF-actin has been measured b
several groups@23–25# by analyzing observations of th
Brownian fluctuations of fluorescently labeled filaments
unentangled solutions@23–25#. A value of Lp51761 mm
has been consistently obtained from observations of
ments that are stabilized against continuous polymeriza
and depolymerization by addition of fluorescently labe
phalloidin, which allows the filaments to be diluted belo
the critical polymerization concentration for visualizatio
Isambertet al. @25# report a persistence length ofLp518
61 mm for phalloidin-stabilized actin, in agreement wi
earlier studies@23,24#, but find a lower value ofLp59
61 mm for rhodamine-labeled actin filaments that are n
stabilized by phalloidin, which were visualized very near t
critical polymerization concentration in order to produce
solution containing a few long filaments diluted by a larg
concentration of monomeric actin. It not yet clear wheth
the properties of labeled but unstabilized actin or those
actin stabilized with labeled phalloidin are more represen
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tive of the properties of unlabeled, unstabilized actin of t
sort used in most rheological studies. Except where oth
wise noted, we will assume a persistence length of 17mm in
what follows.

Käs et al. @21,22# have also used fluoresence microsco
to measure the tangential diffusivityDrep of entangled actin
filaments as a function of contour length. They find that t
dependence ofDrep on chain length, for chains of length 7
60 mm, is roughly consistent with an Einstein relation of th
form Drep5T/(zL), with a friction coefficient per unit
length of z50.120.2 dyne s cm22 that shows no measur
able dependence on concentration.

The values ofz needed to describe Kaset al.’s observa-
tions of reptation are significantly larger than those obtain
by calculating the hydrodynamic drag associated with dr
ging a cylindrical fiber tangentially through an aqueous s
vent. The friction coefficient ofz.0.16 dyne s cm22 ob-
tained from measurements ofDrep for the two shortest fibers
of L56.9 mm and 11.2mm in @22# corresponds to the us
in Eq. ~9! of @12# of an effective solvent viscosityhs
50.08 dyne s cm22, i.e., eight times the viscosity of wate
This sluggish tangential diffusion could in principle be d
to either attractive or repulsive interactions between cha
i.e., diffusion could be slowed either by having the cha
stick weakly to one another or by jamming of chains agai
one another. The effect of steric jamming of rigid rods up
tangential diffusion was considered theoretically by Edwa
and Evans@33#, who showed that the effect could becom
important at concentrations near the isotropic-nematic tr
sition concentrationr IN , but were unable to give a reliabl
quantitative treatment. Observations of entangledF-actin
filaments by Kaset al. were carried out at concentration
close tor IN .

Measurements of self-diffusivity of the rodlike polyme
poly(g-benzyl glutamate! ~PBG! in concentrated solutions
by Bu et al. @34#, using fluorescence photobleaching reco
ery, have shown that the tangential self-diffusivity of PB
decreases significantly at concentrations approachingr IN .
Bu et al. find that the ratioD/D0 of the diffusivity D to the
valueD0 obtained in dilute solution, for samples with sever
different molecular weights, appears to be a function of
ratio r/r IN alone, and find a value ofD/D0;0.1 near the
I -N transition. Complete suppression of the diffusion of
rodlike polymer in the two directions perpendicular to t
chain, due to the formation of a cage of surrounding m
ecules, in the absence of any reduction in tangential diffus
ity, would by itself reduceD/D0 to about 1/2.~This value
reflects the fact that the tangential diffusivity of a thin rod
dilute solution is about twice its diffusivity in either perpen
dicular direction.! The observation of values ofD/D0 sub-
stantially less than 1/2 thus implies that tangential, as wel
perpendicular, diffusivity must be substantially decreased
concentrated solutions. Both the observed scaling ofD/D0
with r/r IN and the fact the PBG molecules in pyridine a
believed to interact as simple hard rods suggest that decr
of tangential diffusivity in PBG solutions is a result of ster
jamming. This, in turn, suggests jamming as the more lik
of the two possible causes of the low tangential diffusivity
F-actin.
2-14
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The contour length density ofF-actin for a solution with
an actin concentration ofcA51 mg/ml, which is typical of
the measurements considered below, is 39mm22, based on
a helical repeat unit of 360 Å containing 13 monomers w
a monomer molecular weight of 42 000. This correspon
for Lp517 mm, to a dimensionless concentration ofrLp

2

51.13104.

B. Tube radius

Käs et al. @21,22# have obtained a quantitative measure
the tube radius inF-actin solutions by visualizing fluctua
tions of single fluorescently labeled filaments within a tigh
entangled solution of unlabeled filaments. Ka¨s et al. record
micrographs of single labeled filaments, taken at short in
vals over a period greater than the entanglement time
much less than the reptation time, e.g., 64 micrographs ta
at intervals of 0.1 s in Ref.@22#. They then graphically over
lay the resulting images of the chain contour, to produc
bundle of overlapping lines that visually defines the tu
Values for the tube diameter originally reported in Re
@21,22# were obtained by measuring the average width of
resulting bundle, averaged over the length of each filam
and over several filaments at each concentration. To facili
comparison of these experiments to theory, J. Ka¨s has kindly
provided values for the actual standard deviation ofh(s),
projected onto the focal plane of the microscope, calcula
from the same data sets. The resulting values for the stan
deviation are typically about three times smaller than
bundle diameters reported previously.

Figure 6 shows a comparison of the predictions forRe of
the three models presented in Secs. III–V to these data.

FIG. 6. Tube radiusRe vs actin concentrationcA . Results of
Kas et al. @21,22# for the tube radius inF-actin solutions, obtained
by reanalysis of fluoresence microscopy data originally reporte
Ref. @21# ~open squares! and Ref.@22# ~open circles!, compared to
predictions of the elastic network~solid line!, binary collision
~long-dashed line!, and effective medium~short-dashed line! ap-
proximations.
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dependence of the measured values ofRe on concentration in
Fig. 6 is consistent with any power law exponent in the ran
between the BCA prediction ofRe}r20.6 and the EMA pre-
diction of Re}r20.5. The quantative predictions of the ENA
which yields the largest tube diameter of the three mod
are within the scatter of the data.

C. Plateau modulus

Attempts to compare predictions for the plateau modu
to experiments onF-actin are thus far plagued by the exi
tence of significant discrepancies between values ofG re-
ported by several different experimental groups. Rheolog
measurements ofF-actin solutions have been carried out b
Janmey and co-workers@26#, Pollard, Xu, Wirtz, and co-
workers@27,28#, and Sackmann and co-workers@30,31# ~see
references and discussion in@12#!. Enormous discrepancie
between values ofG.102–103 dyn/cm2 initially reported
for the plateau modulus by Janmey and co-workers and
ues of G.1 –20 dyn/cm2 reported in Refs.@27,28,30,31#
have apparently been resolved as the result of a collabora
and careful comparison of experimental procedures@29#.
These large discrepancies have been traced to differenc
sample preparation and storage conditions, and are now
lieved to have been the result of the spontaneous oxidatio
monomers during storage, which led to the formation
cross-links between actin filaments upon polymerizat
@32#, together with the sensitivity of the modulus to the pre
ence of small concentrations of cross-links@12#. There re-
mains, however, a smaller but apparently systematic disc
ancy between values ofG.5 –10 dyn/cm2 for cA
51 mg/ml recently reported for freshly polymerized act
by Xu et al. @29#, and the lower values ofG.1 dyn/cm2

reported by Hinneret al. @31#.
I noted in Ref.@12# that quantitative predictions of th

plateau modulus obtained by using fluorescence microsc
measurements of the tube diameter to estimateLe are in
reasonable quantitative agreement with the measuremen
Hinneret al. @31#, and with earlier measurements by Ruddi
et al. @30#, but are, correspondingly, 5–10 times below t
values recently reported in Refs.@26–29#. Here I give a more
detailed comparison of theoretical predictions for the plate
modulus to the available rheological data, focusing on
data of Refs.@30,31#, while now using predicted rather tha
measured values for the tube diameter.

1. Data of Hinner et al.

Figure 7 shows a comparison of theoretical predictions
the plateau modulus to measurements by Hinneret al. @31#.
The values of the plateau modulus reported in Ref.@31# and
reproduced here were obtained from the value of the stor
modulus G8(v) at the frequency for which tan(d)
5G9(v)/G8(v) is minimum. Here, I useG08 to denote
moduli obtained by this prescription, andG to denote theo-
retical values predicted for a hypothetical solution of in
nitely long chains. In many of the samples studied by Hinn
et al., the average chain length has been controlled by add
small concentrations of the capping protein gelsolin to
F-actin solution, which allows one to calculate a nomin

in
2-15
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average chain lengthL̄ under the assumption that each gels
lin caps one actin filament, and that uncapped filaments
rare. Figure 1 of Ref.@31# shows measured values ofG08 ,
reproduced as open squares in Fig. 7, for a series of 12
lutions with actin concentrations in the rangecA50.3–
1.4 mg/ml and a common nominal chain length ofL̄
516 mm. This series of measurements shows a concen
tion dependence consistent with the power lawG08}cA

1.4 pre-
dicted by the BCA approximation and earliear scaling ar
ments. In Fig. 1 of the same paper, Hinneret al. show
measurements ofG08 for a series of samples with a commo
actin concentration ofcA51.0 mg/ml and varying nomina
average chain lengths in the range 2.5mm<L̄<27.5 mm.
The modulus was found to remain near a constant va
G0851.0560.1 dyn/cm2 ~shown by the inverted triangle in

Fig. 7 for chains of nominal length 4mm,L̄,15 mm, but
to fall off rapidly for L̄,4 mm, and to increase somewh
with increasing chain length forL̄.15 mm. The decrease in
G08 for L̄&4 mm may be plausibly argued to be a result
the approach of the average chain length to the entanglem
length of Le.2 mm that is obtained either from the ob
served modulus or from the ENA. The increase inG08 with

increasing chain length forL̄.15 mm is troubling, how-
ever, since any tube model would predict a plateau modu
that is independent of chain length in the limit of long cha
lengths. The three open circles in Fig. 7 are values ofG08

FIG. 7. Comparison of theoretical predictions for the plate
modulusG08 vs concentration inF-actin solutions to results of mea
surements of Hinner and co-workers@31#. Predictions are given for
elastic network~solid line!, binary collision~long-dashed line!, and
effective medium approximations~short-dashed line!. Open squares
are the values reported in Fig. 3 of Ref.@31# for a sequence of

solutions withL̄516 mm. The inverted triangle is the value ob
tained from Fig. 1 of the same paper for several solutions cont

ing filaments of length 4mm<L̄<15 mm. Open circles are ex
perimental values ofG08 obtained from the measurements shown
Fig. 8 below.
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obtained from the unpublished measurements of storage

loss moduli for three samples withL̄55 mm, which are
shown in Fig. 8 and discussed in greater detail below.

The theoretical predictions forG08 shown in Fig. 7 were
obtained as follows. The BCA, EMA, and ENA were used
predict values for the plateau modulusG of a hypothetical
network of infinite chains of persistence lengthLp
517 mm. Predictions forG were used as inputs to the rhe
logical model developed in Ref.@12# for a 1 mg/ml solution
containing an exponential distribution of chain lengths w
L̄55 mm, like those shown in Fig. 8, andG08 was set equal
to the value ofG8(v) obtained at the frequency for whic
tan(d) is minimum. This yields a modulusG085G/1.36. Use

u

n-

FIG. 8. Comparison of linear viscoelastic measurements
G8(v) ~closed symbols! andG9(v) ~open symbols! in F-actin so-
lutions with nominal chain length of 5mm ~data provided by B.
Hinner and E. Sackmann! to theoretical predictions forG8(v)
~solid lines! andG9(v) ~long-dashed line!. The upper panel shows
loss and storage moduli for a solution withcA51.0 mg/ml, and the
lower panel shows storage moduli for three different concen
tions. Short-dashed lines connecting experimental points are gu
to the eye.
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of the shorter reported persistence length ofLp59 mm in
the ENA results forcA51.0 mg/ml in a predicted platea
modulus about 20% larger than that shown in Fig. 7, a p
dicted tube radius about 4% larger than that shown in Fig
Changes this small would have no effect upon conclusi
regarding the extent of agreement between theory and
periment. The predictions of the ENA for the plateau mod
lus are thus found to be in good quantitative agreement~us-
ing either value of Lp) with both the concentration
dependence and absolute magnitudes of the moduli repo
by Hinner and co-workers.

In Fig. 8, predictions of the rheological model of Ref.@12#
for the frequency-dependendent moduliG8(v) and G9(v)
are compared to unpublished measurements by Hinneret al.
of G8(v) and ~for one sample! G9(v) for threeF-actin so-
lutions with a common nominal chain lengthL̄55 mm.
Predicted storage and loss moduli are obtained by using
ENA prediction forG as an input to the rheological mode
and assuming an exponential distribution of chain leng
with a number-averaged chain lengthL̄55 mm. The effec-
tive solvent viscosity used in the theory has been adjuste
as to give a tangential friction coefficientz50.13 P. This
value was chosen to fit the data, but is within the range
values forz inferred by Käs et al. from fluoresence micros
copy observations of reptation@21,22#. The theory clearly
does an excellent job of predicting both the plateau mod
~with no free parameters! and the main features of the fre
quency dependence in these three samples. The degr
agreement between predicted and measured plateau m
in these samples must, however, be partially fortuitio
since Hinner estimates@35# that his data are reproducibl
from sample to sample only to within650%, consistent
with the range of values seen in Fig. 7. There is a noticea
tendency, which is apparent to greater or lesser degree i
of the available rheological data forF-actin solutions, for the
measured values ofG8(v) to begin increasing slowly with
increasingv in a range of intermediate frequenciesv*1 –
10 rad/s in which the theory predicts a much flatter plate
The roughly linear increase of the calculatedG9(v) with
frequency at frequenciesv*1021 rad/sec is a result of the
tension induced in a rodlike chain subjected to a small os
latory shear flow, which acts to oppose the oscillatory ext
sional drag forces exerted on the chain by such a flow. I
possible that the slow upturn inG8(v) at intermediate fre-
quencies, which occurs in these samples at frequencies
which G9(v).G8(v), is a reflection of an additional cur
vature stress induced by this tension, which was not allow
for in Ref. @12#.

2. Data of Xu et al.

Agreement between the above predictions for the plat
modulus and the results of Xuet al. @29# is much less satis
factory. Xuet al. undertook a systematic study of the effec
of a number of experimental factors upon the values obtai
for the plateau modulus of purifiedF-actin solutions, in an
attempt to identify the origins of the large discrepanc
among the values published previously in the literature~see
Table I of @29#!. Comparison of measurements on three d
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ferent commercial rheometers housed in three different la
ratories showed that one of the three~the Rheometrics RFS
II at Harvard! consistently yielded moduli three times larg
than those obtained from the other two instruments~a Weis-
senberg Rheogonimeter at Johns Hopkins University and
other RFS II at the University of Maryland!. Much more
significantly, Xu et al. showed that some preparation an
~particularly! storage procedures yielded samples w
moduli 2–3 orders of magnitude larger than those obtai
for freshly polymerized actin. Xuet al. reported, however,
that they could obtain reproducible values for the stora
modulus of freshly polymerized actin. Their results f
freshly polymerized actin~using the two rheometers tha
yield lower moduli! show a storage modulus ofG8(v)
.5 dyn/cm2 at the flattest part of the plateau, nearf
.0.01 Hz, which in most samples rises slowly toG8(v)
.10 dyn/cm2 at 1 Hz. These values are roughly consiste
with those obtained in earlier studies by Pollard, Schwa
Xu, Wirtz and various co-workers, but are roughly five tim
higher than those obtained by Hinneret al., or those pre-
dicted by the ENA. This difference appears to be larger th
the sample-to-sample variation found by Xuet al. for fresh
actin. The reason for this remaining experimental discr
ancy is not known.

VIII. CONCLUSIONS

The calculations of the tube diameter and plateau modu
given above are based upon a consideration of two very
ferent and complementary descriptions of the interactions
tween a chain and its surroundings in an entangled netw
The binary collision approximation attempts to explicitly d
scribe the motion of a test chain in a partially frozen en
ronment, in which the surrounding chains are confined
static tubes, and is based upon a detailed treatment of
interactions of two nearby chains. When treated se
consistently, this approximation yields power lawsRe
}r23/5 andG}r7/5 for the tube diameter and modulus, co
sistent with the results of a simple geometrical scaling ar
ment, and predicts numerical prefactors that cannot be
tained from such arguments. The effective mediu
approximation describes the collective elastic displacem
of the surrounding network by treating it as an elastic co
tinuum. This approximation yields different power lawsRe
}r21/2 and G}r4/3, with exponents that happen to be n
merically similar to those obtained from the binary collisio
approximation, despite the very different physics incorp
rated into the two approximations. The collective displac
ment described by the effective medium approximation
found to become the dominant contributor to the complian
of the network at high concentrations, but not by much: T
tube diameters predicted by the two models remain com
rable at values ofrLp

2.104 typical of F-actin solutions,
which are thus far the highest accessed in experiment.
elastic network approximation attempts to integrate th
two approaches, by allowing both for continuum elastic d
formations of the network and for motion of the test cha
relative to that of the surrounding network, and so sho
provide a more realistic description of confinement than
2-17
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
ther of the two simpler models.
Predictions of the elastic network approximation for t

tube radius in tightly entangledF-actin solutions are in quan
titative agreement~i.e., within a few tens of percent! with
values of Re in F-actin solutions obtained by fluoresen
microscopy.

The theory of confinement presented here, when co
bined with the tube model of rheology presented previou
also predicts absolute magnitudes for the plateau moduliG in
tightly entangled solutions. The comparison of predictio
for G to rheological measurements onF-actin solutions is
complicated by the fact that different experimental grou
have not yet obtained quantitatively consistent results for
plateau modulus. The predictions of the elastic netw
modulus for the plateau modulus are found to be in go
agreement with values measured by Hinneret al., over about
one decade in actin concentration, but are roughly a facto
5 below those reported by the collaboration of Pollard a
Xu and co-workers. A more quantitative test of the accura
~or inaccuracy! of predictions for the plateau modulus wi
thus have to await resolution of the remaining experimen
discrepancies in measurements usingF-actin solutions, or
the investigation of other model systems of tightly entang
chains.
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APPENDIX A: STATISTICAL MECHANICS OF A
CONFINED POLYMER

This Appendix provides formal definitions for sever
single-chain thermodynamic potentials that may be use
characterize the topologically constrained equilibrium st
of a single confined polymer.

Consider a network ofN11 chains that includes a tes
chain with contourr (s) andN medium chains with contour

$ r̃1( s̃), . . . ,r̃N( s̃)%, in which the test chain is subjected to
transverse external forcef(s). The canonical partition func
tion for the entire topologically constrained network is giv
by a path integral

Z@ f#[E
accessible

D@r , r̃1 , . . . ,r̃N#e2$Ubend1Uext%/T, ~A1!

in which *D@r , r̃1 , . . . ,r̃N# denotes a path integral over co
formations of allN11 chains, and in which the subscrip
‘‘accessible’’ indicates that the path integral should be tak
over only the subspace of topologically accessible
crostates of the network. The bending energyUbend is the
sum of the single-chain bending energies of allN11 chains,
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while the external potentialUext , defined in Eq.~3!, is a
functional of the test chain contour alone.

By differentiating lnZ@f# with respect to Fourier ampli-
tudes f(q) of the external force, and then averaging ov
network topologies, it is straightforward to show that

d ln Z@ f#
d f a~2q!

5^ha~q!&, ~A2!

d2 ln Z@ f#
d f a~q!d f b~2q!

U
f50

5
d^ha~q!&
d f b~q!

U
f50

5^ha~q!hb~2q!&0,

~A3!

wherea andb are 2D Cartesian indices. By combining E
~A3! with Eq. ~5! for ^ha(q)hb(2q)&0, it may then be
shown that

d f a~q!

d^hb~q!&
U

^h&50

5@TLpq41g~q!#dab , ~A4!

where the left hand side is evaluated in the unperturbed e
librium state, wheref(s)5^h(s)&50.

The potential of mean forceAcon f@r # is defined by a path
integal

e2bAcon f[ r ][E
accessible

D@ r̃1 , . . . ,r̃N#e2b( i 51
N Ubend[ r̃ i ]

~A5!

over topologically accessible conformations of theN me-
dium chains, in which the test chain is constrained to a sp
fied contourr (s), and in which the energy in the exponenti
is the total bending energy of theN medium chains alone
The only role of the test chain in this definition is thus
present an immoveable, uncrossable linelike obstacle to
other chains. The potentialAcon f@r # depends upon the con
formation of the test chain because changes inr (s) cause
changes in the limits of integration~though not the inte-
grand! in Eq. ~A5!. The probabilityP@r # that a fluctuating
test chain will adopt a specified contourr (s) is given by the
Boltzmann weight

P@r #5Z21e2$Ubend[ r ] 1Acon f[ r ] 1Uext[ r ] %/T, ~A6!

whereUbend@r # is the bending energy of the test chain alon
In thermal equilibrium, the external forcef exerted on a

fluctuating test chain must, on average, be balanced b
combination of bending forces arising from the bending e
ergy of the test chain and forces arising from collisions w
neighboring chains. We may thus decomposef as a sum

f~q!5^fbend~q!&1^fcon f~q!&, ~A7!

where

^fbend~q!&[K dUbend@h#

dh~2q! L , ~A8!
2-18
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TUBE DIAMETER IN TIGHTLY ENTANGLED . . . PHYSICAL REVIEW E63 031502
^fcon f~q!&[K dAcon f@h#

dh~2q! L , ~A9!

are the average bending and confinement/collision forces
erted by the test chain. In the limit of weakly curved cha
that is of interest here, we may approximate

^fbend~q!&.TLpq4^h~q!&. ~A10!

Combining Eq.~A10! with Eq. ~A4! immediately yields Eq.
~14! for g(q) as a functional derivative g(q)
5d f con f,a(q)/d^ha(q)&.

The effective potentialG@^h(s)&# is defined by the Leg-
endre transform

G@^h&#[2T ln~Z!1E dŝ h~s!&•f~s! ~A11!

of the topology-averaged free energy, and is a natural fu
tional of the average displacement^h(s)&. It may be shown
by standard manipulations that

f a~q!5
dG

d^ha~2q!&
, ~A12!

wheref is the total force on the chain. To separate the eff
of interactions between chains from the effect of the intram
lecular bending energy, it is convenient to decomposeG as a
sumG5Gbend1Gcon f , in which Gbend is required to satisfy

^ f bend,a~q!&[
dGbend

d^ha~2q!&
, ~A13!

and in whichGcon f is required to satisfy the correspondin
relation given in Eq.~15!.

APPENDIX B: BCA EFFECTIVE POTENTIAL FOR A
SEMIFLEXIBLE TEST CHAIN

Here, I present a binary collision approximation calcu
tion of an effective potential for a semiflexible test cha
The calculation is similar to the one given in Sec. IV for
rigid test rod, except that here the test and medium chains
treated on a more equal footing, by allowing both chains
undergo transverse fluctuations around a preferred tube
tour, as shown in Fig. 9. Consider interaction of a semifl
ible test chain and medium chain with contoursr (s) and
r̃ ( s̃), respectively, and define preferred tube contours^r (s)& t

and^ r̃ ( s̃)& t for both chains; these are their average conto
in the transparent state of the specified medium chain. In
absence of any external force on the test chain, the un
turbed preferred tube contours may be approximated n
their point of closest approach by straight lines

^r ~s!& t,05su, ~B1!

^ r̃ ~ s̃!& t,05s0u1c0ẽ11 s̃ ũ, ~B2!
03150
x-
s

c-

t
-

-
.

re
o
n-
-

s
e
r-
ar

whereu andũ are unit tangent vectors constructed parallel
these unperturbed tube contours at their point of closest
proach,ẽ1 is a unit vector perpendicular tou andũ, c0 is the
separation of the two tube contours at the point of clos
approach, ands0u is the position of the test chain contour
this point. Transverse displacements of the chain conto
from these unperturbed tube contours are described by
fields

h~s![r ~s!2^r ~s!& t,0, ~B3!

h̃~ s̃![ r̃ ~ s̃!2^ r̃ ~ s̃!& t,0 , ~B4!

which may be decomposed into Cartesian components

h~s!5h1~s!ẽ11h2e2, ~B5!

h̃~ s̃!5h̃1~ s̃!ẽ11h̃2~ s̃!ẽ2 , ~B6!

whereẽ2 is a unit vector that is perpendicular to bothẽ1 and
ũ, ande2 is a unit vector perpendicular toẽ1 andu.

Consider a situation in which a spatially uniform forc
density f is applied to the test chain, so as to produce
uniform average displacement^h& t in the tube~i.e., average!
contour of the test chain. In the BCA, we asume that
application of this force causes no change in the prefer
tube contour of the medium chain. When attempting to c
culate the average displacement of the test chain, we m
keep in mind that the average displacement of a semiflex
test chain at its point of closest approach to the tube con

FIG. 9. Geometry for binary interaction of a fluctuating worm
like test chain with a preferred tube contour unit tangentu ~vertical!
near the point of closest approach to a preferred tube contour

unit tangentũ of a nearby medium chain. The minimum distan
between the preferred tube contours isc5c02^h1&, where ^h1&
50 in the absence of an external force on the test chain.
2-19
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DAVID C. MORSE PHYSICAL REVIEW E 63 031502
of a specified medium chain will generally be different fro
the average displacement^h& at a randomly chosen poin
along the test chain: The point of closest approach obviou
has a special statistical status in the physical state of inte
since it is known that transverse fluctuations of the test ch
are directly constrained at this point by the presence of
medium chain. I assume in what follows that the point
closest approach loses this special status in the transp
state, in which the test and medium chain can pass thro
each other, and thus approximate the average displace
of the preferred tube contour of the test chain at this point
the average displacement^h& of the test chain at a randoml
chosen point along its length, which may be taken to be
from the point of closest approach. The minimum separa
of the two preferred tube contours~i.e., the thermal averag
contours in the transparent state! in the presence of an exte
nal force is then given, by analogy to Eq.~27!, by c5c0

2^h1&.
It is assumed that fluctuations ofh and h̃ at the point of

closest approach are statistically independent in the trans
ent state, and that the probability distributions in this st
may be approximated by Gaussians,

P~hi !5
1

A2pRe

e2(hi2^hi &)
2/2Re

2
, ~B7!

P~ h̃i !5
1

A2pRe

e2h̃i
2/2Re

2
~B8!

for Cartesian indicesi 51 or 2. The probability that the tes
chain and medium chain will be trapped in the1 topological
state, in whichh̃1.2c01h1 at the point of closest ap
proach, is equal to the probability of findingh̃1.2c01h1 in
the transparent state whenf50, which is given by the double
integral

p1~c0!5E
2`

`

dh1P~h1!E
2c01h1

`

dh̃1P~ h̃1!. ~B9!

The probabilitiesp1(c0) andp2(c0) of the 1 and2 topo-
logical states may be expressed as

p6~c0!5xS 6
c0

Re
D , ~B10!

where

x~x![E
2`

` dy

A2p
e2y2/2E

2x1y

` dz

A2p
e2z2/2. ~B11!

Note that

x~x!5F~x/A2!, ~B12!

where F(x) is the normal distribution function defined i
Eq. ~32!, as may be confirmed by differentiatingx(x) and
carrying out the resulting Gaussian integral fordx(x)/dx to
show thatdx(x)/dx5dF(x/A2)/dx.
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In the physical situation of interest, where the test a
medium chains are uncrossable, the probability distribut
for values ofh1 at the point of closest approach between t
tube contours of the test and medium chains, for a ch
trapped in either the1 or 2 topological state, is given by
the Boltzmann weight

P6~h1!5
exp$2~1/2Re

2!~h12^h1&!22ba6~c02h1!%

A2pRe
2x~c/Re!

,

~B13!

wherea6(c)52T ln F(6c/Re) is the binary interaction free
energy given in Eq.~33!, and where the normalization facto
is chosen so as to guarantee that*P6(h1)51. The average
force exerted upon the medium chain, for a known topolo
cal state, averaged over fluctuations of both the medium
the test chains, is given by the integral

^ f 6&5E dh1P6~h1!
]a6

]h1
U

c0

. ~B14!

Using Eq.~B13! for P6 , it is straightforward to show tha
the rhs of Eq.~B14! may be expressed as a derivative,

^ f 6&52T
]

]^h1&
ln x~6c/Re!. ~B15!

The quantity2T ln x(6c/Re) may thus be interpreted as
binary interaction contribution to the effective potenti
Gcon f experienced by a semiflexible chain, in close analo
to the way thata652T ln F(6c/Re) appears in Sec. IV as a
contribution to the potential of mean force of a rigid test ro

The rest of the calculation of the effective potential for
semiflexible test chain proceeds by close analogy to the
responding calculation for a rigid test chain, and so is o
outlined here. The average force^f& exerted by the test chain
upon the medium chains may be expressed as the deriv
^f&5(1/L)]Gcon f /]^h& of an effective potentialGcon f that
may be expressed in the BCA as an average of the bin
interaction effective potential2kT ln x(6c/Re) over all pos-
sible positions and orientations for the tube contours
nearby medium chains, and over both possible topolog
states for test and medium chains with known tube conto
Evaulating this average yields an expression forGcon f that is
identical to that given in Eq.~41!, except for the replacemen
of the functionF by x throughout the expression. Use of E
~B12! for x(x) thus immediately yields Eq.~43! for Gcon f .

APPENDIX C: FORCE DISTRIBUTION

Here, we consider a situation in which the test chain
subjected to a forcef(s), and transmits an average forc
fcon f(s) to a relatively small set of primary medium chain
We attempt to describe the ensemble averageF(r ) for the
force associated with collisions between these primary m
dium chains and the secondary medium chains that con
them. In doing so, we associate these secondary colli
forces, as in the BCA, with the forces arising from a se
consistently determined confinement potential imposed
2-20
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each of the primary medium chains.
First consider the one-dimensional redistribution of forc

along the length of a primary medium chain that is subjec
to a force f̃( s̃) arising from collisions with the test chain
wheref̃( s̃) lies in the plane perpendicular to the tube conto
of the medium chain, and wheres̃ is a contour distance alon
the medium chain. In practice, this force will be localiz
within a region of sizeRe around the point of closest ap
proach of the tube contours of the test chain and the med
chain of interest. The resulting average transverse displ
ment of the medium chain is given, in 1D Fourier space,

h̃~q!5
1

TLpq41g~q!
f̃~q!. ~C1!

The corresponding average forcef̃con f(q)5g(q)h̃(q) ex-
erted on the confinement potential is given by

f̃con f~q!5
g~q!

TLpq41g~q!
f̃~q!. ~C2!

By inverse Fourier transforming the above, we see tha
localized forcef̃ exerted on a primary medium chain at poi
s̃50 results, in this harmonic model, in a distributed for
on the tube of the formf̃con f( s̃)5x̃( s̃) f̃, where

x̃~ s̃![E dq

2p

g~q!

TLpq41g~q!
e2 iqs̃ ~C3!

is a one-dimensional distribution function with a range
orderLe .

Now consider the 3D distribution of forces produced
the interaction of a test chain with nearby medium chai
Let f(ũ,s) be the average force exerted at points along the
test chain upon primary medium chains with orientationũ,
so thatfcon f5*dũf(ũ,s). The corresponding spatial distribu
tion F(r ) of forces exerted by the primary chains upon th
confinement potentials is given by
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F~r !5E dsE ds̃E dũ d~ ũs̃1su2r !x̃~ s̃!f~ ũ,s!,

~C4!

wheres̃ is a distance measured along the medium chain fr
the point of collision with the test chain. Fourier transform
ing the above gives

F~k!5E dũ
g~q!

TLpq41g~q!
f~ ũ,q!, ~C5!

whereq[k•ũ, and wheref(ũ,q) and x̃(q) are the 1D Fou-
rier transforms off(ũ,s) and x̃( s̃), respectively.

Two further approximations are now introduced pure
for reasons of mathematical simplicity.

~i! The forcef(u,s) is approximated by a function

f~ ũ,s!5fcon f~s!/~2p! ~C6!

that is independent ofũ, thus assuming that the force exerte
by the test chain on its surroundings is distributed random
to medium chains with all orientations. By this ‘‘preavera
ing’’ of f(ũ,s) with respect tou, we obtain a force of the
form given in Eq.~55! with a transformed 3D distribution
function

x~k!5E dũ

2p

g~q!

TLpq41g~q!
, ~C7!

whereq[k•ũ.
~ii ! The functiong(q) is approximated for this purpose b

a q-independent constantg(q)5TLpqe
4 , with a value qe

523/2/Le chosen so as to return the correct value forLe
when this approximation forg(q) is used in Eq.~10!.

Equation~56! for x(k) is obtained by using this last ap
proximation forg(q) in Eq. ~C7!.
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